Некоторые аспекты конструирования соединительных муфт высокого напряжения

Задача импортозамещения кабельной арматуры для линий высокого напряжения требует оптимизации параметров элементов кабельных муфт. В случае использования емкостного принципа снижения неравномерности поля в кабельных разделках основным элементом муфты является стресс-конус, изготовленный из кремнийорганической резины. Для соединительных муфт, по сравнению с концевыми, существует ряд особенностей, которые необходимо учитывать при конструировании.

Георгий Грешняков, к. т. н.

g.greshnyakov@gmail.com

Дмитрий Селезнев

selezneff.mitia2012@yandex.ru

работе [1] рассмотрены вопросы оптимизации конструкции активного элемента концевой муфты — стресс-конуса, когда выравнивание

Рис. 1. Стресс-конус соединительной муфты. Общий вид

поля в разделке кабеля проводится емкостным методом [1-5]. Следует заметить, что в соединительных муфтах, по сравнению с концевыми [3], количество критических зон увеличивается: появляется дополнительная зона на границах высоковольтного электрода, расположенного над соединительной гильзой. Кроме того, в зависимости от длины соединительной гильзы, существует опасность возникновения дополнительной критической зоны (у края гильзы), которая зависит от соотношения между длиной гильзы и длиной высоковольтного электрода [5]. Целью настоящей статьи является оптимизация [6] геометрических параметров элементов стресс-конуса соединительной муфты (рис. 1, 2).

Зависимость напряженности электрического поля (рис. 3) от длины высоковольтного электрода описывается характерной кривой (рис. 4, 5). Однако в случае, если соединительная гильза короче высоковольтного электрода менее, чем на 10 мм, происходит резкое увеличение напряженности в критиче-

Таблица 1. Значения напряженности поля в зонах 3, 4 в зависимости от длины высоковольтного электрода при фиксированном размере соединительной гильзы

Длина высоковольтного электрода	E, кB/мм (зона 3)	Е, кВ/мм (зона 4)
280	5,11	0,0001
260	4,8	0,0008
200	4,79	0,0024
180	4,71	0,017
160	4,75	0,2
140	4,61	7,84

Таблица 2. Значения напряженности поля в зонах 1,2 при разной длине дифлектора

Длина дифлектора, мм	E, кB/мм (п/п) (зона 1)	Е, кВ/мм (у края) (зона 2)
250	4,89	1,17
230	4,86	1,23
210	4,82	1,25
190	4,75	1,26
170	4,98	1,33

ской зоне 3. При длине гильзы большей, чем длина высоковольтного электрода, появляется новая критическая зона (у края гильзы), значение напряженности в которой много больше значения напряженности у края высоковольтного электрода.

Исследование зависимости напряженности в зоне 3 от длины высоковольтного электрода

Значения напряженности поля в зонах 3, 4 в зависимости от длины высоковольтного электрода при фиксированном размере соединительной гильзы сведены в таблицу 1.

При сравнении зависимости напряженности электрического поля от длины высоковольтного электрода при разных длинах соединительной гильзы было установлено, что зависимость при длине гильзы 150 мм и при длине 180 мм существенно не отличаются друг от друга (рис. 4, 5).

Исследование зависимости напряженности электрического поля в зонах 1,2 от длины дифлектора

Значения напряженности поля в зонах 1,2 при разной длине дифлектора (рис. 6) сведены в таблицу 2.

высоковольтного электрода при длине гильзы 150 мм

Исследование зависимости напряженности электрического поля от угла наклона дифлектора к оси кабеля (зона 1)

Выбор оптимального значения угла наклона иллюстрируется цветовыми диаграммами распределения напряженности электрического поля в зоне 1 (рис. 7–9).

Анализ распределения напряженности поля показывает, что ее значение прямо пропорционально углу между касательной к начальному участку дифлектора (рефлектора) и осью

Рис. 5. Зависимость напряженности электрического поля от длины высоковольтного электрода при длине гильзы 180 мм

Силовая элементная база

Рис. 3. Распределение напряженности электрического поля при длине высоковольтного электрода 140 мм

кабеля (углу наклона). То есть, угол следует делать, по-возможности, минимальным (из соображений технологии изготовления).

Исследование зависимости величины напряженности электрического поля в зонах 1 и 2 от расстояния между высоковольтным электродом и дифлектором

В таблице 3 сведены данные по зависимости величины напряженности электрического поля в критических зонах 1 и 2 от расстояния между краями дифлектора и высоковольтного электрода.

Рис. 7. Угол наклона 10°

Рис. 9. Угол наклона 20°

Таблица 3. Зависимость величины напряженности электрического поля в критических зонах 1 и 2 от расстояния между краями дифлектора и высоковольтного электрода

Расстояние между дифлектором и высоковольтным электродом, мм	Напряженность поля вблизи дифлектора (критическая зона 1) Е, кВ/мм	Напряженность поля вблизи высоковольтного электрода (критическая зона 2) Е, кВ/мм
65	1,10	2,78
55	1,20	2,80
45	1,47	2,93
35	1,91	3,12
25	2,67	3,51
10	5,50	6,00

На рис. 10 приведена цветовая диаграмма распределения поля между дифлектором и высоковольтным электродом при расстоянии между ними 65 мм.

Влияние проводимости высоковольтного электрода на напряженность поля в зоне 2

График зависимости величины напряженности электрического поля в зоне 3 от величины активной проводимости материала высоковольтного электрода представлен на рис. 11.

График показывает, что, начиная со значения 0,0002 См/м, дальнейшее увеличение не ведет к существенному снижению напряженности поля в критической области 3. Очевидно, что эти результаты можно распространить и на область 1 в связке со значением проводимости материала дифлектора (материал аналогичен материалу, из которого изготовлен высоковольтный электрод). Заключение

Определены проблемные зоны в усиливающей изоляции соединительной муфты и проведен анализ напряженности электрического поля в проблемных зонах стресс-конуса соединительной муфты. Произведена оценка конструктивных размеров стресс-конуса соединительной муфты, изготовленного из кремнийорганической резины известного производителя для кабелей класса напряжения 110 кВ. В результате предлагаются следующие параметры двухкомпонентного стресс-конуса (электрические и механические свойства эластомерных изоляционных и проводящих материалов известны).

При длине соединительной гильзы (сплав меди) 150–160 мм:

- общая длина стресс-конуса 660 мм;
- длина дифлектора 170 мм (с каждой стороны);
- длина высоковольтного электрода 190 мм;
- расстояние между в/э и дифлектором 65 мм.

Силовая элементная база

Рис. 10. Распределение напряженности электрического поля между дифлектором и высоковольтным электродом (оранжевым цветом отмечена наиболее уязвимая область)

При этом расчетная максимальная напряженность поля в критической зоне — 2,78 кВ/мм (зона 3).

Литература

- Грешняков Г. В., Дубицкий С. Д. Комбинированный способ снижения неравномерности электрического поля в муфтах силовых кабелей // Силовая электроника. 2010. № 2.
- 2. Грешняков Г. В., Дубицкий С. Д. Математическое моделирование электрического поля в муфтах силовых кабелей // Силовая электроника. 2010. № 3.
- Грешняков Г. В., Коровкин Н. В., Дубицкий С. Д., Ковалев Г. Г. Численное моделирование электрического поля в усиливающей изоляции кабельной муфты // Кабели и провода. 2013. № 6.
- Грешняков Г. В., Дубицкий С. Д., Коровкин Н. В. К вопросу о конструировании кабельных муфт высокого напряжения // Силовая Электроника. 2014. № 1.
- 5. Пат. на полезную модель № 97013 (РФ) Соединительная муфта для силового кабеля / Г. В. Грешняков, И. В. Журавлев, А. В. Матвеев // Зарег. в Государственном реестре полезных моделей 20.08.2010. Срок действия патента истекает 29.12.2019.
- 6. Дубицкий С. Д. Elcut 5.1 платформа разработки приложений анализа полей // Exponenta Pro. 2004. № 1.